
ImmersiveDeck: A large-scale wireless VR system for multiple users
Iana Podkosova∗ Khrystyna Vasylevska† Christian Schoenauer‡ Emanuel Vonach § Peter Fikar¶

Elisabeth Broneder‖ Hannes Kaufmann∗∗

Interactive Media Systems Group
TU Wien

ABSTRACT

We present preliminary results of work on a low-cost multi-user
immersive Virtual Reality system that enables collaborative experi-
ences in large virtual environments. In the proposed setup at least
three users can walk and interact freely and untethered in a 200 m2

area. The required equipment is worn on the body and rendering is
performed locally on each user to minimize latency. Inside-out op-
tical head tracking is coupled with a low-cost motion capture suit to
track the full body and the head. Movements of users, 3D interac-
tions and the positions of selected real world objects are distributed
over a wireless network in a server-client architecture. As a re-
sult, users see the effect of their interactions with objects and other
users in real time. We describe the architecture of our implemented
proof-of-concept system.

Index Terms: Computer Graphics [I.3.7]: Virtual Reality—

1 INTRODUCTION

With the current advances in computational and display technology,
consumers begin to expect not only a natural and high quality Vir-
tual Reality (VR) experience, they also want to be able to share it
with other people in real-time. Plans of the opening of commercial
VR entertainment centres have been announced by several compa-
nies (The VOID , Survious, VRcade). These companies promise
to provide immersive VR experiences in large physical spaces to
multiple users simultaneously, including locomotion by real walk-
ing, haptic feedback and the possibility of hand interaction. Yet the
potential of immersive multi-user VR is not limited to entertain-
ment. Other application areas include collaborative training, edu-
cation, behavioural research, collaborative exploration of scientific
data, etc. However, creating a multi-user VR setup is a challenging
technical task, and building such a system in a cost-efficient way
makes the challenge even greater.

We present ImmersiveDeck, a system where several users can be
simultaneously immersed in a virtual environment (VE), explore
VEs by real walking and interact with each other in a natural and
intuitive way. Our presented system is built from off-the-shelf hard-
ware or available prototypes and is easy to setup. Our major contri-
bution is a low cost flexible multi-user system architecture that in-
corporates global position tracking, full-body motion tracking, user
communication, interaction and tracking of physical objects. We
also present a new workflow and algorithms for large-scale marked-
based tracking.

∗e-mail: ipodkosova@ims.tuwien.ac.at
†e-mail: vasylevska@ims.tuwien.ac.at
‡e-mail:schoenauer@ims.tuwien.ac.at
§e-mail:vonach@ims.tuwien.ac.at
¶e-mail:peter.fikar@tuwien.ac.at
‖e-mail:bronedere@gmail.com
∗∗e-mail:kaufmann@ims.tuwien.ac.at

Figure 1: (a) : Two users in the tracking area during an immersive
VR experience. (b) : Their avatars in a shared VE.

2 RELATED WORK

Research on navigation and locomotion in VR shows that real walk-
ing has advantages compared to other navigation techniques. It pro-
vides a higher degree of presence in a VE [6], contributes to users’
spatial updating [1], search task performance [5], attention [9] and
improves task performance [8]. To accommodate real walking in a
VR setup, there is a need for a large enough physical space and a
wide area tracking system to correctly estimate users’ positions.

Several VR systems using real walking in a large space have
been published. In the scope of this paper, we can only cover a
few of the most recent VR systems. Multi-user capabilities of these
systems have only been partially demonstrated. The HIVE [11] en-
vironment uses an outside-in optical WorldViz tracking system con-
sisting of 10 cameras to track users’ positions and a head-mounted
display (HMD) attached to a rendering station. The system tracks
only head positions of several users or several body parts of one
user. Generally, using an outside-in approach for tracking full body
motion of several users is problematic as they can easily occlude
each other. It leads to high costs as many cameras are needed to
compensate for possible occlusions. In [2], the authors present a
self-contained and portable VR system tested in an outdoor envi-
ronment. Inertial tracking units attached to users’ feet are used to
derive their relative positions, while a GPS module provides abso-
lute position corrections with the accuracy of± 3m. All processing
is done on a laptop attached to a backpack frame, with an HMD
used for visual output. The experiments conducted with the system
only demonstrated its use for a single person at a time, however
multi-user capabilities are claimed to be easily provided by adding
an ad-hoc network to the system. The work in progress on another
low-cost portable VR system is presented in [10]. This system uses
an Oculus Rift HMD coupled with a mobile phone to render the
VE, a Razer Hydra tracking system connected to RaspberryPI to
estimate head rotation relative to the body and allows one-handed
interaction. The platform might support multiple users, however in
that case a global position and rotation tracking of each user would



Figure 2: Hardware overview. On the left: a user in the tracking
room equipped with a processing laptop (1), a motion capture suit
(6), an Oculus Rift DK2 (3) with an attached tracking camera (4) and
a headset (2). Tracking data from the camera, HMD and motion cap-
ture suit is fused into a global pose and distributed to the server and
other clients over a wireless network. Tracking of big objects (7) is
implemented globally by a camera connected to the server. Track-
ing of small objects (8) is implemented locally by a smartphone (5)
attached to the user’s HMD.

be necessary.
To our best knowledge, none of the aforementioned VR setups

that support real walking features full body tracking or complex
multi-user and object interactions. In the BEAMING project [7],
users’ body movements are tracked with the use of a motion track-
ing suit and transmitted to a robot avatar representing the user at a
remote location. Motion data of arms and hands is streamed in real
time over the Internet. However, the robot’s movements are not
completely in sync but loosely coupled with the user’s movements.
In case of live interaction between several users that share the same
physical space, full sync of the users’ avatars is needed in real time
to enable free interaction, including the ability to touch each other.

Ultimately, acquiring and maintaining a large area that supports
global and full body motion tracking, interaction and communica-
tion is often both difficult and related to high costs. This paper
presents a solution in which state-of-the-art tracking techniques are
extended and combined with affordable off-the-shelf or beta hard-
ware in a unique system supporting natural locomotion by walking,
direct interaction and voice communication for three users simul-
taneously in a 200 m2 area. In the following sections we describe
the principle components of our system and the preliminary perfor-
mance tests and discuss our results.

3 SYSTEM OVERVIEW

3.1 Requirements

According to [3], real time interactive systems depend on three
overall functional requirements: close coupling of user and sys-
tem, multimodal input and output and interactive 3D content and
representation. In our case, these general requirements entail a set
of more specific functional requirements:

Figure 3: Dataflow in a client application. Circular components rep-
resent GamesObjects that can be manipulated by a player: his own
avatar and virtual camera and tracked physical objects. The SDKs
of various hardware devices are integrated in Unity3D and receive
input from the corresponding devices. Tracking data from hardware
devices is streamed into the Unity3D application. Unity3D scripts
calculate 6DOF poses of the GameObjects. The diagram illustrates
the situation when small object tracking is active on the client (see
Section 6.2 for details).

• The system should implement head and body tracking in a
large area.

• The system should allow voice communication between users.

• The system should allow collaborative interaction with virtual
objects.

• The system should include the possibility of having haptic
feedback while interacting with some virtual objects.

• The system should support at least three users simultaneously.
Therefore, it should implement the distribution of users’ mo-
tion and interaction data.

Additionally, the system should implement the following specific
non-functional requirements:

• Users should be able to move freely. This means that any
wires attached to user-worn equipment are unacceptable. As
a part of the free movement goal, the possibility of a tracking
loss when users turn their heads around or deviate from being
in the upright position should be minimized.

• Users should experience as little latency as possible. The
change of the viewport position and the result of interaction
with nearby objects or other users should be seen immedi-
ately.

• The cost of the system should be low. We intend to use easily
accessible and affordable hardware.

It is also desirable for the system to address other general non-
functional requirements such as scalability, portability and low in-
vasivity.

3.2 Design
Based on the above requirements, we present a system where users
are equipped with Oculus Rift DK2 HMDs, motion tracking suits
and laptops connected to a server machine over a wireless network.
The server runs on a PC with an Intel Core i7 processor. Each



Figure 4: Results of the lens undistortion algorithm. Left: an in-
put image produced with 175 ◦ camera FOV, right: the output of the
undistortion algorithm. The undistorted image is clipped.

client application runs on a laptop equipped with two NVIDIA
GTX 980M graphics cards and an Intel Core i7 quadcore proces-
sor. An inside-out optical head tracking is run on each client lap-
top. Head and body tracking data is streamed to the server and other
clients. Since motion tracking, computation and rendering is per-
formed locally, each user receives updates of their own movements
with minimal latency. The system is implemented in Unity3D (ver-
sion 4.x) game engine, with all of the components integrated di-
rectly into it. Per-user cost of the setup is below 4000 EUR. The
principle hardware components of our VR platform can be seen
in Figure 2. Figure 3 illustrates how input data coming from the
used hardware is processed on a client and used to position Trans-
form nodes of Unity3D.GameObject containers (further referred to
as GameObjects for simplicity) corresponding to the player’s avatar
and virtual camera.

4 USER TRACKING

4.1 Head Tracking

We developed a planar marker tracking solution with a tracking
camera rigidly attached to each head-mounted display. We use an
IDS camera uEye UI-3251LE streaming monochrome images to the
laptop via a USB3 connection at 60 fps. The maximum resolution
of the camera image is 1600x1200 pixels. We use a fish-eye lens
with 175◦ to 190◦ field of view. Our tracking is an extension of a
commercially available marker-based method from Metaio 1. We
have chosen to use ID markers, since they offer the most robust and
fastest tracking compared to different marker types that we tested.
We have experimented with marker sizes and the map density. The
resulting setup uses about 80 square markers of the size 550mm dis-
tributed evenly on the approximately 200 m2 (30x7 m) large ceiling
area. The height of the ceiling is 3.2m. The tracking data of each
marker is streamed directly into Unity3D using the Metaio package
for Unity. This data is then processed as described in Section 4.1.3
to calculate the final camera pose.

We chose inside-out tracking since it allows users to be tracked in
an arbitrary large area as long as it is covered with sufficiently many
markers. Furthermore, fish eye lenses allow to track the marker
map even when the camera is not pointing at the ceiling directly.
Finally, there is no occlusion problem even when users are very
close to each other. Therefore, we achieve the goal of allowing
unconstrained movement in a large area.

4.1.1 Image Undistortion and Lens Calibration

Fish-eye lenses produce very wide angle images, so markers can be
seen in the camera image even if a user is looking down or lying on
the floor. However, these images are strongly distorted. We have

1https://www.metaio.com/

Figure 5: Marker map generation. (a) : In a current camera frame,
the most central marker L is chosen as a temporary coordinate cen-
tre, shown in red. Coordinates of other detected markers (shown in
green) in this temporary coordinate frame are calculated according
to Formula 2. (b) : At the end of scanning, each temporary centre L
has a set of raw poses. (c) : The 3D-median is found for each set of
raw poses. Values around the median (green) are averaged to find
the final pose (black). Raw poses far away from median are filtered
out (red).

implemented a separate software component for runtime undistor-
tion of camera images. First, we obtain intrinsic camera calibra-
tion parameters by using the OCamCalib toolbox by Scaramuzza et
al. [3], whose method is especially suitable for omnidirectional and
fisheye lenses. To do this, we take 15 to 20 pictures of a 12 by 9 field
chessboard pattern with square 80 mm patches, covering as much of
the view as possible at close range from varying angles, obtain the
calibration parameters from them using [3] and save them in a cali-
bration file. The runtime undistortion algorithm based on [3] is im-
plemented as a DirectShow source filter and uses GPU-accelerated
methods in OpenCV for efficient processing. The DirectShow fil-
ter loads parameters for the omnidirectional camera model from the
calibration file upon startup. Using the methods from [3] we cre-
ate a lookup table, which for every pixel in the undistorted image
provides the corresponding pixel position in the original distorted
image. At runtime we use OpenCV to retrieve the camera image
of our IDS camera. Subsequently, the image is transferred to the
GPU, where we use CUDA to efficiently remap the image using
the lookup table. Once downloaded from the GPU the undistorted
image is made available to the tracking software. Metaio requires
another set of calibration parameters for successful tracking. To ob-
tain them, we take another 7 to 10 pictures of the same chessboard
pattern, apply the above undistortion method to them and then use
the camera model of Zhang [9] on the undistorted images. The re-
sulting calibration parameters are applied at runtime by the Metaio
tracking process directly.

4.1.2 Marker map generation

The user’s head camera is tracked relatively to the map of mark-
ers attached to the ceiling. Distances and rotations of the markers
relatively to each other need to be known in order to use tracking
data from all visible markers for the final camera pose calculation.
As measuring those distances and rotations manually or arranging
markers on the ceiling precisely does not seem feasible, we have
developed a scanning procedure that calculates relative positions
and rotations of the markers. The successful scanning requires that
the markers are attached to the flat surface and are not mechanically
distorted.

The scanning procedure is illustrated in Figure 5. During the



scanning, the camera is kept pointing directly at the ceiling and is
moved along the whole tracking area. One of the markers is chosen
to be the centre of the marker map coordinates. In each camera
frame, the marker that is closest to the image centre is chosen as a
temporary centre. Raw tracking data provides poses

Hn
C = [Rn

CT n
C ] (1)

of all recognized markers in camera coordinates, where Hn
C is 4x4

pose matrix, Rn
C is the rotation matrix of the marker n in the camera

coordinates and T n
C its translation vector. An inverse transformation

Hn
L = [Rn

LT n
L ] =

[
RL

CT L
C

]−1
[Rn

CT n
C ] (2)

with the coordinates of the central marker is calculated for each
marker to obtain its coordinates in the coordinate frame of the tem-
porary centre. Moving the camera along the tracking space results
in a set of stored temporary centres together with sets of coordi-
nates of neighbouring markers in respect to them. After real-time
tracking data has been collected, the final local pose relatively to a
temporary centre is calculated for each marker in a post-processing
step. This is done by finding the median pose from the stored values
and calculating an average pose from the values around the median.
After this step, the breadth-first search is performed on the result-
ing data to calculate the poses of all markers relatively to the marker
chosen to be the global coordinate centre.

4.1.3 Marker Tracking
The tracking process uses the marker map generated in the step de-
scribed above. As in the scanning procedure, the tracking process
streams coordinates of each marker visible in the camera frame rel-
atively to the camera. Known markers’ coordinates in the marker
map are used to calculate the camera pose relatively to the centre of
the marker map in an inverse transformation. This way, a number of
camera poses are calculated for every camera frame. The final pose
is a result of median filtering. Only the translational component
of the obtained pose is used for setting a user’s viewport position,
while the rotation is provided by the Oculus Rift tracking data. The
global coordinates of the marker map define the final position of the
player avatar in the virtual world.

4.2 Body Tracking
For full body tracking, we use the beta version of the PrioVR mo-
tion capture suit. A suit consists of 11 inertial sensors placed on a
user’s limbs which are connected to a hub on the user’s chest. Rela-
tive rotations of the sensors are streamed from the hub to a wireless
USB receiver connected to the laptop with transmission latency of
5-8 ms. This data is streamed into Unity3D by the integrated SDK
provided by PrioVR in each frame, where it is used to recalculate
a player’s avatar root position and joints’ rotations in accordance
with the already calculated head camera pose. In the beginning of
each VR session, each suit needs to be calibrated. For this purpose,
a user takes a pre-defined pose (for example, T-pose) that corre-
sponds to an avatar initial pose. The calibration procedure takes
about three seconds. It can be repeated during the VR application
run.

5 OBJECT TRACKING

In our system, users can have haptic feedback while interacting with
some of the virtual objects present in the scene. We achieve this by
having real objects tracked in the real environment and overlaying
them with virtual representations. Object tracking also allows users
to perform collaborative interaction with virtual items in combina-
tion with haptic feedback. For example, two users can simultane-
ously lift a real tracked table and see themselves lifting a virtual

table. Or they can pass each other a smaller item (we use an exam-
ple of a small box).

We divide objects into two categories depending on their size (we
call them big and small objects) and use different tracking methods
for each of the two categories. Positions of big and small virtual
objects are also distributed in different ways.

5.1 Big Object Tracking
Big objects have typical furniture sizes. In our test prototype, we
used a table and a chair as an example.

For tracking of big objects, we use multi-marker tracking. Sev-
eral fiducial markers are attached to the table and the chair and are
tracked by a camera connected to the server machine. We used an
IDS camera with the resolution of 2048x2048 pixels and Metaio
ID markers of the size 287x287 mm. The camera was attached to
the server machine and placed statically at a know position in the
tracking room. Positions of the corresponding virtual objects are
calculated on the server and streamed to clients. With this type of
setup, the area in which users can interact (touch and move) with
big objects is limited by the field of view of one or multiple cameras
used for tracking. In our case, this area was about 3x3 m.

5.2 Mobile Tracking of Small Objects
Small objects are of a size that users can easily hold them in their
hands, pick them up and transport them across the tracked space.

The tracking of smaller objects is implemented locally with an
Android smartphone mounted on a user’s Oculus Rift. For our pro-
totype we employed the Huawei Ascend Y300, which only weighs
130 g and provides a 1 GHz dual-core CPU and a 5 MP camera.

An application based on the Metaio SDK for Android was de-
veloped. It runs directly on the smartphone, taking the most of the
required processing load for the additional tracking process from
the client laptop. The employed tracking is also marker-based. In
this case we decided for image markers since they are robust to oc-
clusions caused by holding the objects. The size and look of the
markers can be chosen appropriately for the tracked object. For our
prototype we designed six markers for a box with the dimensions
of 244 x 142 x 84 mm. Rendering on the smartphone is disabled
to achieve a tracking rate of up to 30 Hz. The acquired pose of
a tracked object is streamed to the laptop over a virtual network
over a USB connection using the Android Debug Bridge (ADB).
The ADB on the client PC is instructed to forward any data on a
specific port to the localhost. This allows a network socket in the
implemented Unity3D application to connect to the server on the
smartphone and to read the streamed tracking data. As soon as an
object is detected on any client, its position and rotation are updated
for other users as well. The details of this synchronisation process
are described in Section 6.2.

6 NETWORK ARCHITECTURE

The communication between the server and clients is implemented
via a 5GHz wireless network set up with an ASUS RT-AC87U
router connected to the server. The router supports simultaneous
dual band operation, which results in maximum throughput of 1.73
Gbps on the 5GHz 802.11ac band (4 x 433 Mbps streams). The
client laptops have Intel Dual Band Wireless-AC 7260 cards.

The challenge in designing a network architecture for a multiuser
VR system is to develop an approach that can distribute a large
amount of tracking data of each user while keeping the latency per-
ceived by each user as low as possible. This requirement is criti-
cal in situations when users touch each other or pass a virtual (and
a tracked real) object to each other. In such cases, a user should
not notice latency between the haptic feedback when another user
touches them and seeing that users avatar touching their own vir-
tual body. Similarly, the latency between physically manipulating
tracked real objects and seeing their virtual representations change



Figure 6: Data exchange between the server and a client. (a): Mobile
tracking of small objects is active on the client. In this case, the
client application sets up poses of corresponding GameObjects. The
poses of the server copies of these GameObjects are synchronised.
(b): When the client application is not tracking small GameObjects,
their poses are synchronised from the server. All synchronisation is
done via UDP.

should be minimal. Taking into account these requirements, we
carefully select which changes of virtual objects and their proper-
ties are synchronized over the network, as well as the type of data
distribution.

We use the built-in Unity3D networking as the core of our im-
plementation. The architecture of our distribution has star topol-
ogy: each client communicates only with the server and never di-
rectly with other clients. The Unity3D network layer uses UDP
for communication. Generally, our server implementation is non-
authoritative. All the changes related to a player’s avatar and vir-
tual camera happen on the client first and then get distributed to
the server. This way, the VE reacts to a user’s direct input with-
out any delay. However, we have implemented a system for the
management of direct object manipulation rights. This means that
each client can start manipulating GameObjects other than his own
avatar and the virtual camera only after the rights for GameObjects
manipulation were granted to it by the server upon the fulfilment of
a specific condition. Figure 6 illustrates the data exchange between
the server and a client in situations when small object tracking is
active or not active on the client.

6.1 User Data Distribution

In Unity3D, networking is managed by NetworkView components
that are attached to every GameObject that needs to be distributed.
Each player avatar is network-instantiated by its client application.

This way, the server and every client application has a GameObject
representing this player’s avatar, but changes in this GameObject’s
state (6DOF pose) can only be made on the client that instantiated
it. Absolute position and body tracking is done in the client applica-
tion. The tracking data is applied to the client avatar and distributed
to the corresponding avatar copies in the server and other clients’
applications. The avatar’s pose distribution is implemented by syn-
chronizing each avatar bone rotation and the avatar root position
and rotation.

The synchronization of each avatar bone is implemented via a
Unity3D script that fires a serialisation call sending variables as a
binary stream at a rate of 60 times per second. State synchronisation
of a NetworkView component attached to each bone is set to unreli-
able. This means that Unity3D sends packets without checking that
they have been received (following the UDP protocol). In case of
a package loss, pose data coming with the next package is applied
to a bone that is being synchronised. In case of an avatar pose syn-
chronisation, it is more important to send updates frequently than to
receive all packages since the pose is changing constantly and the
loss of single packages would not lead to visible errors in the pose.
In case of reliable synchronisation, the delay caused by packets’
receipt verification could lead to disturbing latency.

6.2 Object Distribution
We created an object distribution approach that focuses on a di-
rect interaction-feedback loop for each user. Here, it is illustrated
on the example of small objects. However, interaction with door
handles, light switches and similar objects that each user can ma-
nipulate to change the state of the VE visible to all the other users
can be handled following the described concept, independently of
whether these objects provide haptic feedback or not.

Our example small object is a box that can be held by users. The
server and all of the clients have a virtual representation of the box.
It is a GameObject that is network-instantiated by the server and
therefore controlled by it. Each client has also a local GameOb-
ject representing the box. This local copy is created in the client
application and is not network-distributed. When all the users are
far away from the virtual box, its pose is set by the server. Users
can see the server-controlled copies of the virtual box in their ap-
plications but cannot manipulate them. Local copies stay invisible.
When certain interaction conditions are fulfilled, i.e. when the real
box is tracked by a user’s smartphone attached to the HMD, the
client application sends an object control request to the server. The
server grants control to the client and the local copy of the virtual
box gets visible to the user. Both object control request and request
approval are implemented as Remote Procedure Calls (RPCs). Data
in an RPC is sent reliably, i.e. it is checked whether every data
packet is received using Unity3D’s internal ACKs. If a packet is
dropped, no later packets will be sent until the dropped packet is
resent and received. The user can manipulate the real box and see
the changes in the position of the virtual box (the local client copy)
corresponding to their actions immediately. The pose of the local
virtual box is streamed to the server and applied to the server copy
of the box. Other users continue seeing the network-instantiated
versions of the virtual box mirroring the movement of the server
object. The server-controlled object is distributed through serial-
isation calls fired 60 times per second with state synchronisation
set to unreliable. When the user that is currently manipulating the
box sets it aside, another RPC exchange about object manipulation
rights takes place. The virtual representation of the box switches to
the network-instantiated copy again. The rights for the manipula-
tion of this object can be given to the next client now.

6.3 User Communication
Users of the ImmersiveDeck can talk to each other via headset mi-
crophones. While doing this, they hear correctly spatialized sound,



Figure 7: Static (a) and dynamic (b) jitter. Vertical axis: number
of measurements, horizontal axis: distance from mean-normalized
centre (mm) (a): of the calculated static camera pose, (b): of the
calculated distances between the moving cameras.

i.e. it comes from the direction where a speaking co-player is in the
VE and its loudness varies depending on the distance between the
speaker and the listener. We use ASUS Vulcan Pro and Logitech
G35 7.1 surround sound noise-cancelling headphones utilizing the
integrated microphone. The voice communication is accomplished
via the TeamSpeak3 plugin for Unity3D. TeamSpeak creates its
own server that is working independently of the Unity3D applica-
tion. TeamSpeak server gets started with the start of the main server
application. With the start of a client application, client TeamSpeak
scripts get initialized on a GameObject representing a user’s head.
Position and rotation values of the user’s head are forwarded to the
TeamSpeak-program that modifies speech input produced by the
users in accordance with their respective positions.

7 PRELIMINARY PERFORMANCE RESULTS

7.1 Head Tracking
To evaluate static jitter of our tracking solution, we placed a camera
on a tripod near the centre of our tracking space and recorded its
calculated 3D position over 450 consecutive frames. The camera
was facing the ceiling, the distance from the camera to the ceiling
was 1.5 m. This corresponds to the head position of a user who is
1.70m tall. 5 to 8 markers were tracked in each camera frame. We
calculated standard deviation σ of the calculated camera pose P =
(Px,Py,Pz). Resulting precision is: Px: σ = 0.4mm, Py: σ = 0.9mm,
Pz: σ = 1.2mm, P: σ = 0.6mm.

To evaluate dynamic jitter, we used a method similar to the one
described in [4]. We rigidly attached two cameras to a metal bar
at a fixed distance from each other. During runtime, we calculated
the Euclidean distance between the 3D positions of the cameras in
every frame, to estimate its standard deviation σdyn . We placed
the bar with the cameras on a tripod at the distance of 1.5m from
the ceiling and moved it along the tracking space at normal walking
speed. The cameras were facing the ceiling. The resulting σdyn =
1.5cm.

For both evaluations, we used cameras of the same type (de-
scribed in Section 4.1), calibrated following the procedure de-
scribed in Section 4.1.1. Quality of optical tracking strongly de-
pends on lighting conditions. The measurements were made on a
clear day when the ceiling was evenly lit from natural sunlight. The
histograms for static and dynamic jitter can be seen in Figure 7.

7.1.1 Body Tracking
Body tracking with the PrioVR motion capture suit suffers from
considerable drift. Each beta suit that was provided to us had to be
recalibrated many times for each user during the application run.
However, an avatar’s limbs controlled by a suit drift away quickly
after every recalibration. Metal objects such as keys placed near
sensors induce even more drift. Suits and single sensors often loose
connection to the wireless transmitter causing the avatars to freeze

Number of clients 1 2 3
Sent, Mbps 2 1.9 1.9
Received, Mbps 0.55 2.4 4.2

Table 1: Network traffic measured on a client laptop (averaged data
from three laptops, σ = 0.1 Mbps).

in the middle of the experience. Multiple recalibration sessions or
specific magnetic calibration procedures recommended by the man-
ufacturer did not improve the performance of body tracking. We are
currently looking into alternative body tracking solutions.

7.1.2 Rendering Performance and Update Rate
We measured the overall update rate of the running Unity3D appli-
cation on the client laptops in two test scenes. The first virtual scene
is very simple and contains a 3D model of our tracking room with-
out any textures, 3D models of big (a chair and a table) and small
(a box) tracked objects and a light source (Figure 1a). The second
scene contains a large terrain with plants, several houses and a wa-
ter surface with enabled reflections. There are two light sources in
this scene. The update rate measured on a laptop working on the
battery power is 23 fps in the first scene and 20 fps in the second
scene (averaged among three laptops with identical configurations).

We chose laptops which are not using Nvidia Optimus technol-
ogy to avoid lower clock speeds when running on battery. However,
when running on battery power the GPU memory clock gets re-
duced (not the GPU core clock as with Nvidia Optimus) which still
leads to a much lower rendering performance. Connecting the lap-
top to a power source increases the update rate by the factor of 2.5.
We hope that GPU memory clock reduction limitation will be over-
come in the future, allowing much faster update rates. Currently, a
fully charged battery provides about 40 minutes of immersion time.

In Unity3D, a rendering call happens after the update functions
of all scripts have terminated, including the update function of the
tracking script. Therefore, tracking speed influences the rendering
speed. The speed of Metaio tracking decreases with the increase of
the number of markers used in the marker map, since the tracking
algorithm iterates through all possible marker IDs when trying to
recognize a marker in the camera image. Our performance tests
were conducted with the marker map containing 80 markers which
we needed to cover the area of 200 m2.

7.1.3 Network
We measured network traffic on each client laptop when one, two
and three users were connected to the server. Average results are
shown in Table 1. These numbers include head tracking data and
body tracking data. Measurements were performed without acti-
vated object tracking. Networking update rate is set to 60 times per
second in Unity3D. The 5GHz router that we use is theoretically
capable to manage a total throughput of 1.73 Gbps. This way, only
a very small percentage of the available bandwidth is used by every
client.

8 DISCUSSION

ImmersiveDeck implements functional requirements presented in
Section 3.1. The system has proven to work well for three users
at a time and was tested by a number of its developers and pilot
users. These pilot tests show that ImmersiveDeck provides an un-
obtrusive embodiment and a highly immersive VR experience even
though some technical limitations remain to be solved. However,
a formal study on the system’s usability and user experiences with
a larger number of participants is necessary. Such a study should
evaluate the usability of the system as a whole as well as its sep-
arate components, such as voice communication and collaborative
interaction with virtual objects. In the following we briefly discuss



the non-functional requirements that our system fulfils and current
technical limitations.

Technical limitations The update rate of a laptop working on
battery power is currently the biggest technical limitation of our
system. This limitation is conditioned by two factors mentioned
in the previous section: the GPU memory clock reduction when
working on battery power and the dependency of the overall update
rate on the tracking speed. The first problem can only be solved
by hardware manufacturers in new generations of laptops. How-
ever, we can see ways to overcome the second limitation by decou-
pling the tracking process from the main Unity3D process. While
marker-based tracking proved to be an easy to set up and stable so-
lution, different types of markers could be used. We are currently
researching marker-based tracking alternatives that avoid iterating
through all the available marker IDs at the marker recognition stage
of the tracking pipeline.

Free movement Our setup allows users to freely perform
large range of movements: to walk with arbitrary speed (up to run-
ning), to look around without the loss of tracking and even to sit on
big tracked object such as chairs.

Latency In our preliminary tests, we did not measure latency
connected to network distribution. However, interactions between
users and collaborative interaction with virtual objects do not reveal
obvious latency between haptic feedback and graphics. We there-
fore expect that network-related latency is small, at least in case
when three users are using the system simultaneously. The overall
update rate could be improved following the strategies described
above.

Scalability In terms of the size of the tracking area, the system
is only limited by the amount of ID markers that can be used for
tracking and the coverage range of the router. In the current solu-
tion, adding even more markers to the marker map would reduce
the tracking speed. The use of alternative types of markers could
remove this limitation. As opposed to outside-in tracking solutions,
an even larger tracking space will not lead to additional costs in our
system.

According to our network measurements, the wireless router
could handle many more users connected to it simultaneously. The
model that we use supports the MO-MUMO (Multi-User Multiple
Input Multiple Output) feature that allows to communicate with 4-8
clients simultaneously. However, extensive latency tests need to be
performed to determine the maximum amount of users that could
use ImmersiveDeck simultaneously.

Invasivity Currently, the overall weight of the equipment worn
by each user is 7.4 kg, including a backpack frame with a laptop,
a body tracking suit, an Oculus Rift with a tracking camera and
a mobile phone attached to it and headphones. Attaching the pro-
cessing laptop to a backpack frame is a quick solution for the proof-
of-concept system. We are looking into more ergonomic ways of
carrying the laptop. We expect that future generations of laptops or
mobile devices with similar computational capabilities will provide
a smaller form-factor.

9 CONCLUSION AND FUTURE WORK

This paper presents a novel proof-of-concept wireless VR system
that integrates off-the-shelf hardware and state-of-the-art tracking
techniques to allows at least three users to be immersed in a VE si-
multaneously. Its users can walk freely in a large space while their
absolute positions and full body motions are tracked in real time.
ImmersiveDeck enables voice communication and direct interac-
tion between users, including the possibility to touch each other
and collaboratively interact with virtual (and tracked real) objects.
The corresponding actions are correctly seen by all users in the VE.

We provide preliminary performance measures and discuss the lim-
itations of the system. We plan a user evaluation of the system as
the next step of our work, together with the implementation of the
technical improvements outlined in the previous section.

ACKNOWLEDGEMENTS

The authors would like to thank Jim and Julien Rüggeberg from
Illusion Walk KG for funding the development of ImmersiveDeck.

REFERENCES

[1] S. S. Chance, F. Gaunet, A. C. Beall, and J. M. Loomis. Locomotion
mode affects the updating of objects encountered during travel: The
contribution of vestibular and proprioceptive inputs to path integra-
tion. Presence, 7(2):168–178, 1998.

[2] E. Hodgson, E. R. Bachmann, D. Vincent, M. Zmuda, D. Waller,
and J. Calusdian. Weavr: a self-contained and wearable immersive
virtual environment simulation system. Behavior research methods,
47(1):296–307, 2015.

[3] M. Latoschik and W. Stuerzlinger. On the art of the evaluation and
presentation of ris-engineering. In Software Engineering and Archi-
tectures for Realtime Interactive Systems (SEARIS), 2014 IEEE 7th
Workshop on, pages 9–17, March 2014.

[4] A. Mossel and H. Kaufmann. Wide area optical user tracking in un-
constrained indoor environments. In Proceedings of the The 23rd In-
ternational Conference on Artificial Reality and Telexistence, pages
108–115. IEEE, 2013.

[5] R. A. Ruddle and S. Lessels. The benefits of using a walking interface
to navigate virtual environments. ACM Transactions on Computer-
Human Interaction (TOCHI), 16(1):5, 2009.

[6] M. Slater, M. Usoh, and A. Steed. Taking steps: The influence of a
walking technique on presence in virtual reality. ACM Trans. Comput.-
Hum. Interact., 2(3):201–219, Sept. 1995.

[7] A. Steed, W. Steptoe, W. Oyekoya, F. Pece, T. Weyrich, J. Kautz,
D. Friedman, A. Peer, M. Solazzi, F. Tecchia, M. Bergamasco, and
M. Slater. Beaming: An asymmetric telepresence system. Computer
Graphics and Applications, IEEE, 32(6):10–17, Nov 2012.

[8] E. Suma, S. Babu, and L. Hodges. Comparison of travel techniques in
a complex, multi-level 3d environment. In 3D User Interfaces, 2007.
3DUI’07. IEEE Symposium on, March 2007.

[9] E. Suma, S. L. Finkelstein, S. Clark, P. Goolkasian, L. F. Hodges,
et al. Effects of travel technique and gender on a divided attention
task in a virtual environment. In 3D User Interfaces (3DUI), 2010
IEEE Symposium on, pages 27–34. IEEE, 2010.

[10] J. Thomas, R. Bashyal, S. Goldstein, and E. Suma. Muvr: A multi-
user virtual reality platform. In Virtual Reality (VR), 2014 iEEE, pages
115–116, March 2014.

[11] D. Waller, E. Bachmann, E. Hodgson, and A. Beall. The hive: A
huge immersive virtual environment for research in spatial cognition.
Behavior Research Methods, 39(4):835–843, 2007.


